Bulent Ataman
Department of Neurobiology
Harvard Medical School

OSTN expression is induced by sensory experience in the primary cortex


“Evolution of an Activity-Regulated Factor in the Primate Brain”

Monday, January 30, 2017
11:00-11:50 am
CCRC Auditorium

Host: Steve Dalton
Evolution of an Activity-Regulated Factor in the Primate Brain

Presentation Abstract

Experience-driven programs of neuronal gene expression have been shown to regulate the brain development and the components of these programs are mutated in a variety of human disorders of cognitive function. We identified a new neuronal activity-dependent secreted factor Osteocrin (OSTN) that is expressed in developing human and macaque cerebral cortex. Our findings suggest that OSTN evolved to regulate features of neuronal structure and function that are unique to primates.

Dr. Ataman is a candidate for a faculty position in the UGA Center for Molecular Medicine. In 2008, he received his PhD in the Neuroscience Program at the University of Massachusetts Medical School under the direction of Vivian Budnik. In 2008-2009, he was a postdoctoral fellow with Tom Maniatis at Harvard University. In 2009, Dr. Ataman joined Michael Greenberg's laboratory at Harvard Medical School. His current research interests are in the molecular mechanisms of human brain development and evolution.